inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Wuping Liao and Richard Dronskowski*

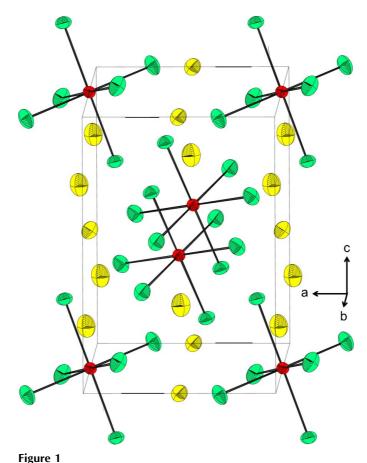
Institut für Anorganische Chemie, RWTH Aachen, Professor-Pirlet-Straße 1, 52056 Aachen, Germany

Correspondence e-mail: drons@HAL9000.ac.rwth-aachen.de

Key indicators

Single-crystal X-ray study T = 293 KMean σ (Y–Cl) = 0.001 Å R factor = 0.027 wR factor = 0.059 Data-to-parameter ratio = 25.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Trisodium yttrium(III) hexachloride

Colourless single crystals of Na_3YCl_6 , crystallizing in the cryolite structure type and isotypic with Na_3GdCl_6 -II and Na_3MCl_6 (M = Sc, Dy–Lu), were prepared from a flux of YCl₃, NaCN and NaN₃; the trivalent yttrium is octahedrally coordinated by chlorine atoms with an average Y–Cl distance of 2.62 Å. The Y atom and one Na atom lie on centres of symmetry.

Received 4 May 2004 Accepted 6 May 2004 Online 15 May 2004

Comment

Unlike Na₃GdCl₆-I (LiSbF₆ type) (Meyer, 1984), Na₃HoCl₆ (Böcker *et al.*, 2001) and Na₃ErCl₆ (Meyer *et al.*, 1987) which are accessible by metallothermic reduction of the corresponding chlorides with sodium metal, single crystals of Na₃YCl₆ were prepared from fluxes of YCl₃, NaCN and NaN₃. Na₃YCl₆ crystallizes with the cryolite structure type (Fig. 1) and is isotypic with Na₃GdCl₆-II (Meyer, 1984) and also Na₃MCl₆ (M =Sc, Dy–Lu; Meyer *et al.*, 1987). The Y atom and

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Displacement ellipsoid plot of the crystal structure of Na_3YCl_6 , viewed approximately along [010], with ellipsoids drawn at the 50% probability level; Y atoms are red, Cl atoms green, and Na atoms yellow.

one Na atom lie on centres of symmetry. The average Y-Cl distance (2.62 Å) is 0.09 Å smaller than the sum of the corresponding effective ionic radii (Shannon, 1976) and thus suggests that a rigid-body correction of the octahedral entities according to the procedure of Schomaker & Trueblood (1968) is appropriate. The corresponding librational analysis is unsatisfactory (R = 0.131) and yields corrected Y-Cl distances that are enlarged by only 0.01 Å. The attempt to correct the interatomic distances librationally by considering the Na-Cl polyhedra is even worse. We mention, however, that the same effect of apparently too short metal-chlorine bonds is seen also for the above Na_3GdCl_6 (0.08 Å), Na_3HoCl_6 (0.08 Å) and Na₃ErCl₆ (0.09 Å).

Experimental

Single crystals of Na₃YCl₆ were synthesized using a flux route (Liao & Dronskowski, 2004) by sealing YCl₃, NaCN and NaN₃ (2:1:1 ratio) in a tantalum ampoule, heating it to 973 K and cooling it slowly (6 K min^{-1}) over a period of a week.

Crystal data

Na ₃ YCl ₆ $M_r = 370.58$ Monoclinic, $P2_1/n$ a = 6.856 (1) Å b = 7.255 (1) Å c = 10.144 (1) Å $\beta = 90.87$ (1)° V = 504.51 (12) Å ³	$D_x = 2.439 \text{ Mg m}^{-3}$ Mo Kα radiation Cell parameters from 6796 reflections $\theta = 3.5-28.3^{\circ}$ $\mu = 7.42 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless
Z = 2	$0.13 \times 0.09 \times 0.04 \text{ mm}$
Data collection	
Bruker SMART APEX CCD diffractometer ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.498, T_{max} = 0.743$ 6796 measured reflections	1258 independent reflections 1055 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 28.3^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 9$ $l = -13 \rightarrow 13$
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.059$ S = 1.021258 reflections 49 parameters

 $w = 1/[\sigma^2(F_o^2) + (0.0259P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Y-Cl3 ⁱ	2.6120 (8)	Na1-Cl2 ⁱⁱ	3.1923 (18)
Y-Cl2 ⁱ	2.6226 (8)	Na1-Cl3 ^v	3.3091 (18)
Y-Cl1 ⁱ	2.6362 (8)	Na2-Cl3 ^{vi}	2.7218 (8)
Na1-Cl3 ⁱⁱ	2.8247 (17)	Na2-Cl2vii	2.7786 (8)
Na1-Cl1 ⁱⁱⁱ	2.8433 (16)	Na2-Cl1 ^{viii}	2.8588 (8)
Na1-Cl2 ^{iv}	2.8517 (17)		
Cl3 ⁱ -Y-Cl3	180.0	Cl3-Y-Cl1 ⁱ	88.22 (3)
$Cl3^i - Y - Cl2^i$	88.72 (3)	$Cl2^i - Y - Cl1^i$	88.33 (3)
Cl3-Y-Cl2 ⁱ	91.28 (3)	Cl2-Y-Cl1 ⁱ	91.67 (3)
Cl2 ⁱ -Y-Cl2	180.0	Cl1 ⁱ -Y-Cl1	180.0
Cl3 ⁱ -Y-Cl1 ⁱ	91.78 (3)		

-z; (iii)

The structure of Na₃YCl₆ was refined using the coordinates of Na₃HoCl₆ (Böcker et al., 2001) as starting parameters. All atoms were refined with anisotropic displacement parameters.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

It is a pleasure to thank the Fonds der Chemischen Industrie (Frankfurt) for financial support.

References

Böcker, M., Gerlitzki, N. & Meyer, G. (2001). Z. Kristallogr. New Cryst. Struct. 216, 19

Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SMART. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.

Liao, W. & Dronskowski, R. (2004). Acta Cryst. C60, i23-i24.

Meyer, G. (1984). Z. Anorg. Allg. Chem. 517, 191-197.

Meyer, G., Ax, P., Schleid, T. & Irmler, M. (1987). Z. Anorg. Allg. Chem. 554, 25-33.

Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison,

Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.